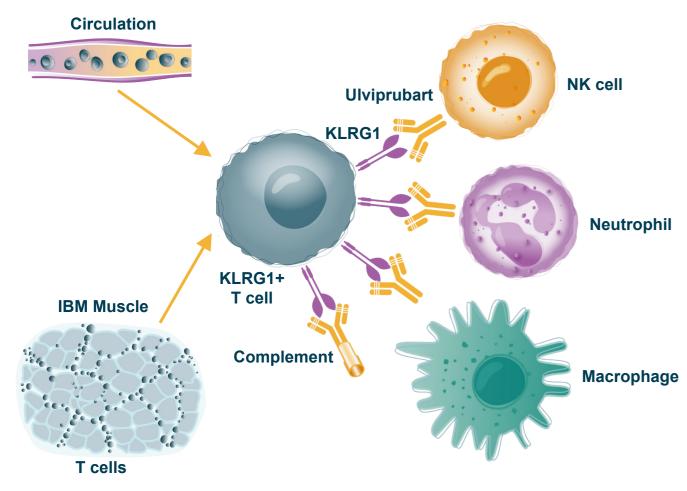
Ulviprubart Pharmacokinetics, Pharmacodynamics, and Safety: Phase 1 Study Results in Patients With Inclusion Body Myositis

Merrilee Needham,¹⁻⁴ Robert D. Henderson,^{5,6} Christina Liang,⁷ Dulce Soler-Ferran,⁸ H. Jeffrey Wilkins,⁸ Steven A. Greenberg^{8,9}

1Perron Institute, QEII Medical Centre, Nedlands, Western Australia, Australia; 2University of Notre Dame, Perth, Western Australia; 3Fiona Stanley Hospital, Perth, Western Australia; 4Murdoch University, Perth, Western Australia; Australia; 3Fiona Stanley Hospital, Perth, Western Australia; 4Murdoch University, Perth, Western Australia; 4Murdoch Unive ⁵Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia; ⁶University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia; ⁷Royal North Shore Hospital, St Leonards, New South Wales, Australia; Northern Clinical School, University of Sydney, New South Wales, Australia; 8Abcuro, Inc., Newton, MA, USA; 9Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA



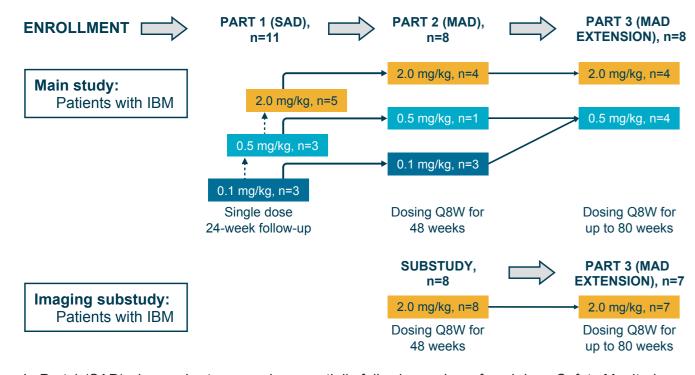
Presented by Jeff Wilkins, MD Email: jeff.wilkins@abcuro.com

Introduction

- Inclusion body myositis (IBM) is a rare, progressive autoimmune disease characterized by invasion and destruction of healthy muscle by highly differentiated cytotoxic CD8+ T cells^{1,2}
- A mean of 70-82% of the blood and mean of 85% of the myofiber-invading and 79% of the myofiber surface CD8+ T-cell populations in IBM have been reported to express the cell surface receptor killer cell lectin-like receptor G1 (KLRG1)³⁻⁵
- Patients with IBM can experience profound functional impairment, including loss of grip strength, difficulty walking, and/or dysphagia, which can negatively impact their mental health and lead to caregiver dependency^{1,2,6,7}
- As no disease-modifying therapies exist for patients with IBM,⁸ there is a high unmet need for a safe and efficacious therapy
- · Ulviprubart, a monoclonal antibody that targets KLRG1, is designed to selectively deplete cytotoxic KLRG1+ T cells and may have clinical activity in patients with IBM (Figure 1)

Figure 1. Schematic of ulviprubart-mediated KLRG1+ T-cell depletion by NK cells, neutrophils, macrophages, and complement

IBM, inclusion body myositis; KLRG1, killer cell lectin-like receptor G1; NK, natural killer.


• Here, we describe pharmacodynamic (PD), pharmacokinetic (PK), and safety results from a first-in-human study of ulviprubart in patients with IBM

Methods

Study design and patients

- In this phase 1, open-label study (NCT04659031), initial patients received subcutaneous ulviprubart (0.1, 0.5, or 2.0 mg/kg) as a single dose (Part 1 single-ascending dose [SAD]) prior to dosing every 8 weeks (Q8W) approximately 6-12 months later, while later patients received 2.0 mg/kg ulviprubart Q8W; patients received ulviprubart for up to 18 months (Figure 2)
- Key eligibility criteria included formal diagnosis of IBM⁹ and age ≥40 years

Figure 2. Study design and patient disposition

In Part 1 (SAD), dose cohorts opened sequentially following review of each by a Safety Monitoring Committee. Patients who completed Part 1 were eligible to participate in Part 2 (MAD) at the same dose level. Patients who completed Part 2 were eligible to participate in Part 3 (MAD Extension); patients who received 0.1 and 0.5 mg/kg ulviprubart in Part 2 will receive 0.5 mg/kg ulviprubart in Part 3, and patients who received 2.0 mg/kg ulviprubart in Part 2 will continue on 2.0 mg/kg ulviprubart in Part 3. IBM, inclusion body myositis; MAD, multiple-ascending dose; Q8W, every 8 weeks; SAD, single-ascending dose.

Assessments and analyses

- PD, PK, and safety results were analyzed descriptively
- PD assessments evaluated blood immune cells, including KLRG1-expressing CD8+ and CD4+ T cells, regulatory T cells, and B cells
- PK parameters for ulviprubart included: Maximum observed concentration (C_{max}), time to maximum observed concentration (T_{max}) , terminal half-life $(t_{1/2})$, area under the concentration-time curve (AUC), apparent clearance (CL/F), and apparent terminal volume of distribution (Vz/F)

- PD and PK analyses were performed as follows:
- Part 1 (SAD):
- Within 2 hours prior to ulviprubart administration on day 1 (predose)
- After ulviprubart administration: On days 2, 3, 4, and 11, at weeks 1, 2, 3, and 4, then every 4 weeks thereafter, and at the end of study (EOS)

- Part 2 (MAD) and the substudy:

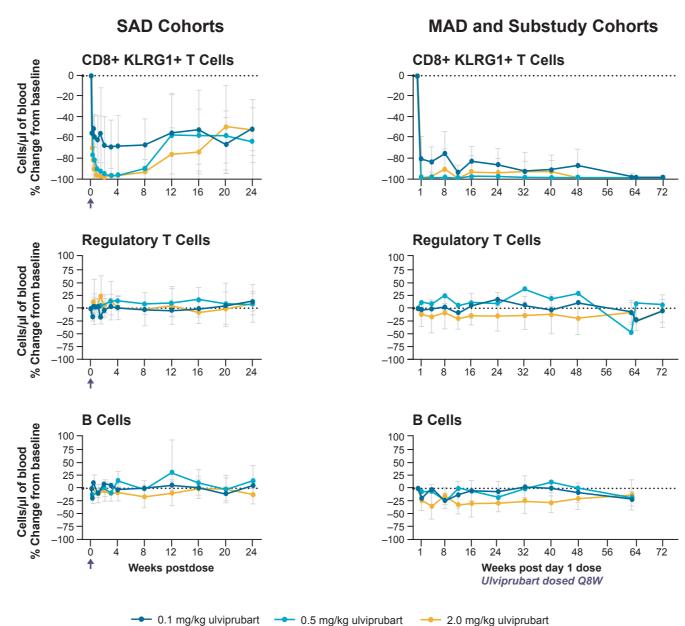
- At screening and predose on day 1 and at weeks 8, 16, 24, 32, 40, and 48 (end of MAD study)
- After administration at weeks 1, 4, 12, and at the EOS
- Part 3 (MAD Extension):
- Predose on day 1 (ie, week 48 above)
- After ulviprubart administration (up to 18 months): On days 113 (week 16), 122, and 178
- Safety assessments included treatment-emergent adverse event (TEAE) monitoring, electrocardiograms, laboratory data, vital signs, and physical examinations; a panel of common herpes viruses were monitored throughout the trial, and other viral load testing was performed as medically indicated

Results

Patient demographics and baseline characteristics

- Nineteen patients were enrolled (0.1 mg/kg, n=3; 0.5 mg/kg, n=3; 2.0 mg/kg, n=13)
- Demographics and baseline characteristics are shown in Table 1

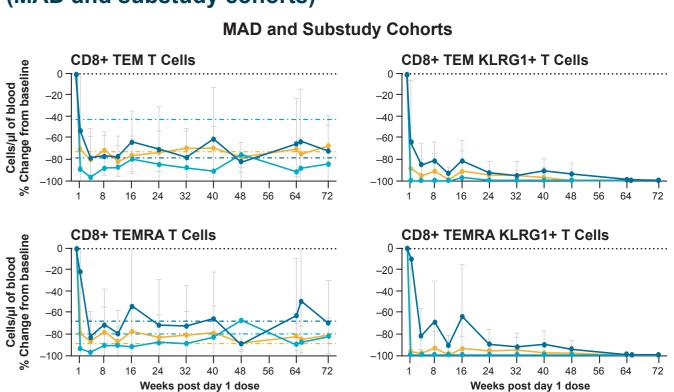
Table 1. Patient demographics and baseline characteristics


	Part 1 (SAD) n=11	Part 2 (MAD) n=8	Substudy n=8	
Age, median (range), years	64 (51-77)	67 (52-77)	69 (46-79)	
Male, n (%)	9 (82)	7 (88)	6 (75)	
Race				
White, n (%)	10 (91)	8 (100)	7 (88)	
Disease duration, median (range), years	7.2 (0.2–17)	7.3 (3.3–18)	6.4 (1.4-18)	

MAD, multiple-ascending dose; SAD, single-ascending dose.

Pharmacodynamic effects of ulviprubart

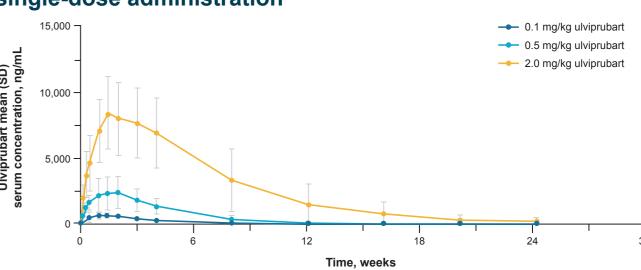
- Depletion of peripheral CD8+ KLRG1+ and CD4+ KLRG1+ T cells was evident on day 1 postdose, with mean CD8+ KLRG1+ T-cell maximum depletions of 69%, 97%, and 98% achieved by weeks 2–3 after a single dose of 0.1, 0.5, and 2.0 mg/kg ulviprubart, respectively, in Part 1 (SAD) (Figure 3)
- Depletion was sustained with up to 72 weeks of MAD dosing (Figure 3)
- Protective regulatory T cells and B cells (cells that do not express KLRG1) were preserved (Figure 3)


Figure 3. Mean (SD) changes in immune cells over time (SAD; MAD and substudy cohorts)

Graphs on the left show data from n=3, n=3, and n=5 patients who received a single dose of 0.1 mg/kg, 0.5 mg/kg, or 2.0 mg/kg ulviprubart, respectively; baseline is prior to ulviprubart dosing, and purple vertical arrow indicates time of ulviprubart administration. Graphs on the right show data from n=3, n=1, and n=12 patients who received 0.1 mg/kg, 0.5 mg/kg, and 2.0 mg/kg ulviprubart Q8W, respectively; baseline is prior to any ulviprubart dosing. One B cell assessment was taken between weeks 48 and 72 in the MAD extension. KLRG1, killer cell lectin-like receptor G1; MAD, multiple-ascending dose; Q8W, every 8 weeks; SAD, single-ascending dose.

 Effector CD8+ T-cell populations (T effector memory cell [TEM] and TEMs expressing CD45RA [TEMRA]) were depleted to the extent of their KLRG1 expression (Figure 4)

Figure 4. Mean (SD) changes in immune cells over time (MAD and substudy cohorts)



→ 0.1 mg/kg ulviprubart → 0.5 mg/kg ulviprubart → 2.0 mg/kg ulviprubart Graphs show data from n=3, n=1, and n=12 patients who received 0.1 mg/kg, 0.5 mg/kg, and 2.0 mg/kg ulviprubart Q8W, respectively; baseline is prior to any ulviprubart dosing. Colored dashed horizontal lines indicate mean percentage of KLRG1+ cells at baseline. KLRG1, killer cell lectin-like receptor G1; MAD, multiple-ascending dose; Q8W, every 8 weeks; TEM, T effector memory cell; TEMRA, TEMs expressing CD45RA.

Pharmacokinetics of ulviprubart

 Following a single dose, ulviprubart displayed a long absorption phase, slow clearance, and a $t_{1/2}$ of 21 days (2 mg/kg group) (Figure 5)

Figure 5. Serum concentrations of ulviprubart over time after single-dose administration

Safety

- No treatment-related serious TEAEs or discontinuations due to TEAEs were reported (**Table 2**)
- The most common treatment-related TEAE was injection-related reaction; injection-related reactions occurred with 6 of the 208 (3%) total doses of ulviprubart administered across all patients, and those 6 reactions only occurred with the first dose
- No clinically significant reactivations of latent viral infections were observed

Table 2. Safety summary

Adverse events	Patients with IBM, N=19 n (%)		
Any TEAE (grade 1 or 2, n=17; grade 3, n=2)	19 (100)		
Severe TEAEs (grade 3)	2 (11)		
Treatment-related TEAEs (grade 1 or 2)	11 (58)		
Severe treatment-related TEAEs	0		
Serious TEAEs (grade 1 or 2, n=2; grade 3, n=2)	4 (21)		
Treatment-related serious TEAEs	0		
Discontinuations due to TEAEs	0		
Most common TEAEs (occurring in ≥25% of patients)			
Fall	14 (74)		
Injection-related reaction	6 (32)		
Pain in extremity	6 (32)		
Skin laceration	6 (32)		
Upper respiratory tract infection	6 (32)		
Arthralgia	5 (26)		
Skin abrasion	5 (26)		
IBM, inclusion body myositis; TEAE, treatment-emergent adverse event.			

Conclusions

- Ulviprubart led to deep and selective depletion of peripheral blood KLRG1+ T cells in patients with IBM in this first-in-human study without impacting regulatory T or B cells
- Ulviprubart displayed PK properties consistent with other therapeutic monoclonal antibodies¹⁰
- Together with the favorable safety profile, these data support the continued development of ulviprubart

This study was sponsored by Abcuro, Inc. Medical writing and editorial assistance were provided

by Peloton Advantage, LLC, an OPEN Health company, and were funded by Abcuro, Inc.

- 1. Lindgren U, et al. Ann Neurol. 2022;92:201-12. 2. Greenberg SA. Nat Rev Rheumatol. 2019;15:257-72.
- 4. Matsubara S, et al. J Neuropathol Exp Neurol. 2022;81:825-35. 5. Goyal NA, et al. Neurology. 2022;98:e1374-e1383.

6. Paltiel AD, et al. *Muscle Nerve*. 2015;52:527-33.